Selasa, 19 November 2013

Tugas 1 - Ekonomi teknik


A. Definisi dan ruang lingkup ekonomi teknik
Definisi Ekonomi Teknik : Disiplin ilmu yang berkaitan dengan aspek-aspek ekonomi dalam teknik yang terdiri dari evaluasi sistematis dari iaya-biaya dan manfaat-manfaat usulan proyek-proyek teknik.
Ekonomi Teknik (Engineering Economics) mencakup prinsip-prinsip dan berbagai teknis matematis untuk pengambilan keputusan ekonomis. Dengan teknik-teknik ini, suatu pendekatan yang rasional untuk mengevaluasi aspek-aspek ekonomis dari alternatif-alternatif yang berbeda dapat dikembangkan. Secara kasar dapat disebutkan bahwa penggunaan terbesar ekonomi teknik adalah evaluasi beberapa alternatif untuk menetukan suatu aktivitas atau investasi paling sedikit memberikan kerugian (Least Costly) atau yang memberikan keuntungan paling banyak (Most Profitable).
Studi ekonomi teknik membantu dalam mengambil keputusan optimal untuk menjamin penggunaan dana (uang) dengan efisien. Studi ekonomi teknik harus diadakan sebelum setiap uang akan diinvestasikan/dibelanjakan atau sebelum komitmen-komitemen diadakan. Studi ekonomi teknik dimulai dari sekarang (now). Kesimpulan-kesimpulannya bergantung pada prediksi kejadian-kejadian (event) yang akan datang.
Studi-studi ekonomi teknik membutuhkan waktu untuk perhitungan-perhitungan yang cermat. Meskipun studi-studi sistematis ini bukan suatu instrumen kecermatan/keseksamaan (precission), melibatkan banyak faktor, perlu berdasarkan estimasi biaya-biaya dan pendapatan-pendapatan yang akan menjadi sasaran kesalahan (error), kemungkinan untuk memperoleh jawaban yang benar dalam membandingkan alternatif-alternatif peralatan akan jauh lebih besar dengan estimasi-estimasi rinci daripada keputusan-keputusan yang akan diambil atas dasar pengalaman atau intuisi seseorang. Bisnis yang sehat akan mendasarkan pada keputusan-keputusan yang sudah diperhitungkan dengan cermat. Oleh sebab itu, untuk keputusan-keputusan manajemen, faktor pengalaman dan pertimbangan saja ada.
Tugas-tugas Ekonomi Teknik : Menyeimbangkan berbagai tukar rugi diantara tips-tips biaya dan kinerjanya.


Minggu, 26 Mei 2013

Hydro Fuel Cell


Hydro Fuel Cell


Telkomsel Pelopori Penggunaan Energi "Hydro Fuel Cell"
Telkomsel menerapkan teknologi energi terbaru yang ramah lingkungan hydro fuel cell di Gedung Telkomsel Trade Centre (TTC) di Sumut. Teknologi itu untuk pertama kalinya dilakukan di industri telekomunikasi seluler di Asia.

"Untuk mempertahankan dan meningkatkan pelayanan sekaligus ikut melaksanakan imbauan pemerintah untuk melakukan efisiensi penggunaan listrik, Telkomsel terus melakukan riset dan pengembangan penggunaan sumber energi alternatif yang ramah lingkungan dan salah satunya adalah hydro fuel cell di mana diterapkan pertama kali di Gedung TTC Medan," kata Direktur Operasi Telkomsel, David Ng, di Medan, Jumat (12/12). Dia bersama VP Network Operation Telkomsel, Andrew Thaf, mengunjungi Gedung TTC di Medan yang baru selesai dibangun.

David menjelaskan bahwa selain hydro fuel cell, Telkomsel juga sudah menerapkan dan tengah mempersiapkan uji coba sejumlah sumber pembangkitan listrik alternatif yang ramah lingkungan seperti solar cell (tenaga surya ), micro hydro ( tenaga air ), dan termasuk wind turbin (tenaga angin). Secara total, kata dia, energi yang terpasang dari sumber energi ramah lingkungan yang diterapkan Telkomsel sudah lebih dari 0,112 megawatt (MW) atau setara dengan hampir 100 genset konvensional kapasitas 20 KVA yang biasa dipakai di industri telekomunikasi seluler.

Keunggulan hydro fuel cell antara lain tidak menimbulkan kebisingan karena tidak terdapat komponen bergerak, tidak polutan (tidak beracun, tidak berbau) karena sekresi (zat buangan) yang ditimbulkan adalah H2O alias unsur air, dan memiliki efisiensi proses yang jauh lebih baik dibanding dengan sistem konvensional.

Lebih jauh Andrew manambahkan bahwa pembangkit listrik berteknologi hydro fuel cell yang digunakan Telkomsel di Medan sangat bersejarah, mengingat penerapan teknologi yang ramah lingkungan ini merupakan yang pertama di Asia untuk industri telekomunikasi.

General Manager Network Telkomsel Wilayah Sumbagut Dedy Jaka menyebutkan, penerapan teknologi hydro fuel cell ini di Medan karena Sumut khususnya kota Medan dinilai memiliki potensi pertumbuhan pelanggan yang pesat sehingga pelayanan harus juga ditingkatkan di tengah sedang terjadi krisis energi.

Keunggulan penerapan sumber energi alternatif hydro fuel cell antara lain: tidak bising karena tidak terdapat komponen bergerak, tidak polutan (tidak beracun, tidak berbau) karena sekresi (zat buangan) yang ditimbulkan adalah H2O alias unsur air, dan memiliki efisiensi proses yang jauh lebih baik dibanding dengan sistem konvensional.

sumber: situs kompas.com, Jumat, 12 Desember 2008

                http://dunia-listrik.blogspot.com/2008/12/hydro-fuel-cell.html

Dasar-Dasar PLC


Dasar-Dasar PLC



Programmable Logic Controller (PLC) adalah sebuah rangkaian elektronik yang dapat mengerjakan berbagai fungsi-fungsi kontrol pada level-level yang kompleks. PLC dapat diprogram, dikontrol, dan dioperasikan oleh operator yang tidak berpengalaman dalam mengoperasikan komputer. PLC umumnya digambarkan dengan garis dan peralatan pada suatu diagram ladder. Hasil gambar tersebut pada komputer menggambarkan hubungan yang diperlukan untuk suatu proses. PLC akan mengoperasikan semua siatem yang mempunyai output apakah harus ON atau OFF. Dapat juga dioperasikan suatu sistem dengan output yang bervariasi.

PLC pada awalnya sebagai alat elektronik untuk mengganti panel relay. Pada saat itu PLC hanya bekerja untuk kondisi ON-OFF untuk pengendalian motor, solenoid, dan actuator. Alat ini mampu mengambil keputusan yang lebih baik dibandingkan relay biasa. PLC pertama-tama banyak digunakan pada bagian otomotif. Sebelum adanya PLC, sudah banyak peralatan kontrol sequence, ketika relay muncul, panel kontrol dengan relay menjadi kontrol sequence yang utama. Ketika transistor muncul, solid state relay yang diterapkan seperti untuk kontrol dengan kecepatan tinggi.

Pada tahun 1978, penemuan chip mikroprosessor menaikkan kemampuan komputer untuk segala jenis sistem otomatisasi dengan harga yang terjangkau. Robotika, peralatan otomatis dan komputer dari berbagai tipe, termasuk PLC berkembang dengan pesat. Program PLC makin mudah untuk dimengerti oleh banyak orang.

Pada awal tahun 1980 PLC makin banyak digunakan. Beberapa perusahaan elektronik dan komputer membuat PLC dalam volume yang besar. Meskipun industri peralatan mesin CNC telah digunakan beberapa waktu yang lalu, PLC tetap digunakan. PLC juga digunakan untuk sistem otomatisasi building dan juga security control system.
Sekarang sistem kontrol sudah meluas hingga keseluruh pabrik dan sistem kontrol total dikombinasikan dengan kontrol feedback, pemrosesan data, dan sistem monitor terpusat. Saat ini PLC sudah menjadi alat yang cerdas, yang merupakan kebutuhan utama di industri modern. PLC modern juga sebagai alat yang dapat mengakuasi data dan menyimpannya.

PLC sebenarnya adalah suatu sistem elektronika digital yang dirancang agar dapat mengendalikan mesin dengan proses mengimplementasikan fungsi nalar kendali sekuensial, operasi pewaktuan (timing), pencacahan (counting), dan aritmatika.
PLC tidak lain adalah komputer digital sehingga mempunyai processor, unit memori, unit kontrol, dan unit I/O, PLC berbeda dengan komputer dalam beberapa hal, yaitu :
• PLC dirancang untuk berada di lingkungan industri yang mungkin banyak debu, panas, guncangan, dan sebagainya.
• PLC harus dapat dioperasikan serta dirawat dengan mudah oleh teknisi pabrik.
• PLC sebagian besar tidak dilengkapi dengan monitor, tetapi dilengkapi dengan peripheral port yang berfungsi untuk memasukkan program sekaligus memonitor data atau program.

Sebagian besar PLC dapat melakukan operasi sebagai berikut :
1. Relay Logic
2. Penguncian ( Locking )
3. Pencacahan ( Counting )
4. Penambahan
5. Pengurangan
6. Pewaktuan ( Timing )
7. Kendali PID
8. Operasi BCD
9. Manipulasi Data
10. Pembandingan
11. Pergeseran

Kehandalan PLC (Programmable Logic Controller)

- Flexibility
Pada awalnya, setiap mesin produksi yang dikendalikan secara elektronik memerlukan masing-masing kendali, misalnya 12 mesin memerlukan 12 kontroler. Sekarang dengan menggunakan satu model dari PLC dapat mengendalikan salah satu dari 12 mesin tersebut. Tiap mesin dikendalikan dengan masing-masing program sendiri.

- Perubahan implementasi dan koreksi error
Dengan menggunakan tipe relay yang terhubung pada panel, perubahan program akan memerlukan waktu untuk menghubungkan kembali panel dan peralatan. Sedangkan dengan menggunakan PLC untuk melakukan perubahan program, tidak memerlukan waktu yang lama yaitu dengan cara merubahnya pada sebuah software. Dan jika kesalahan program terjadi, maka kesalahan dapat langsung dideteksi keberadaannya dengan memonitor secara langsung. Perubahannya sangat mudah, hanya mengubah diagram laddernya.

- Harga yang rendah
PLC lebih sederhana dalam bentuk, ukuran dan peralatan lain yang mendukungnya, sehingga harga dapat dijangkau. Saat ini dapat dibeli PLC berikut timer, counter, dan input analog dalam satu kemasan CPU. PLC mudah di dapat dan kini sudah banyak beredar di pasaran dengan bermacam-macam merk dan tipe.

- Jumlah kontak yang banyak
PLC memiliki jumlah kontak yang banyak untuk tiap koil yang tersedia. Misal panel yang menghubungkan relay mempunyai 5 kontak dan semua digunakan sementara pada perubahan desain diperlukan 4 kontak lagi yang berarti diperlukan penambahan satu buah relay lagi. Ini berarti diperlukan waktu untuk melakukan instalasinya. Dengan menggunakan PLC, hanya diperlukan pengetikan untuk membuat 4 buah kontak lagi. Ratusan kontak dapat digunakan dari satu buah relay, jika memori pada komputer masih memungkinkan.

- Memonitor hasil
Rangkaian program PLC dapat dicoba dahulu, ditest, diteliti dan dimodifikasi pada kantor atau laboratorium, sehingga efisiensi waktu dapat dicapai. Untuk menguji program PLC tidak harus diinstalasikan dahulu ke alat yang hendak dijalankan, tetapi dapat dilihat langsung pada CPU PLC atau dilihat pada software pendukungnya.

- Observasi visual
Operasi dari rangkaian PLC dapat dilihat selama dioperasikan secara langsung melalui layar CRT. Jika ada kesalahan operasi maupun kesalahan yang lain dapat langsung diketahui. Jalur logika akan menyala pada layar sehingga perbaikan dapat lebih cepat dilakukan melalui observasi visual. Bahkan beberapa PLC dapat memberikan pesan jika terjadi kesalahan.

- Kecepatan operasi
Kecepatan operasi dari PLC melebihi kecepatan operasi daripada relay pada saat bekerja yaitu dalam beberapa mikro detik. Sehingga dapat menentukan kecepatan output dari alat yang digunakan.

- Metode bolean atau ladder
Program PLC dapat dilakukan dengan diagram ladder oleh para teknisi atau juga menggunakan sistem bolean atau digital bagi para pemrogram PLC yang lebih mudah dan dapat disimulasikan pada software pendukungnya.

- Reliability
Peralatan solid state umumnya lebih tahan dibandingkan dengan relay atau timer mekanik. PLC mampu bekerja pada kondisi lingkungan yang berat, misalnya goncangan, debu, suhu yang tinggi, dan sebagainya.

- Penyederhanaan pemesanan komponen
PLC adalah satu peralatan dengan satu waktu pengiriman. Jika satu PLC tiba, maka semua relay, counter, dan komponen lainnya juga tiba. Jika mendesain panel relay sebanyak 10 relay, maka diperlukan 10 penyalur yang berbeda pula waktu pengirimannya, sehingga jika lupa memesan satu relay akan berakibat tertundanya pengerjaan suatu panel.

- Dokumentasi
Mencetak rangkaian PLC dapat dilakukan segera secara nyata sebagian atau keseluruhan rangkaian tanpa perlu melihat pada blueprint yang belum tentu up to date, dan juga tidak perlu memeriksa jalur kabel dengan rangkaian.

-nKeamanan
Program PLC tidak dapat diubah oleh sembarang orang dan dapat dibuatkan password. Sedangkan panel relay biasa memungkinkan terjadinya perubahan yang sulit untuk dideteksi.

- Memudahkan perubahan dengan pemrograman ulang.
PLC dapat dengan cepat diprogram ulang, hal ini memungkinkan untuk mencampur proses produksi, sementara produksi lainnya sedang berjalan.

Disamping beberapa kehandalan di atas, tidak bisa dipungkiri bahwa PLC juga mempunyai beberapa kelemahan antara lain :
- Teknologi baru
Sulit untuk mengubah pola pikir beberapa personil yang telah lama menggunakan konsep relay untuk berubah kekonsep PLC komputer.

- Aplikasi program yang tetap
Beberapa aplikasi dari proses produksi merupakan aplikasi yang tidak akan berubah selamanya sehingga keunggulan dari pada PLC untuk mengubah program menjadi tidak berguna.

- Kondisi lingkungan
Lingkungan proses tertentu seperti panas yang tinggi dan getaran ,interferensi dengan peralatan listrik lain membuat keterbatasan pemakaian PLC.

- Pengoperasian yang aman
Pada penggunaan sistem relay, jika sumber daya padam akan langsung mematikan seluruh rangkaian dan tidak secara otomatis bekerja kembali PLC akan langsung menjalankan proses yang di program, namun hal ini tergantung dari program yang dibuat.

- Operasi pada rangkaian yang tetap
Jika suatu rangkaian operasi tidak pernah diubah, seperti misalnya drum mekanik , lebih murah jika tetap menggunakan konsep relay dari pada menggunakan PLC.

Keunggulan PLC dibanding Sistem Konvensional
Salah satu keunggulan PLC dibanding sistem konvensional kontrol panel adalah sebagai berikut :
• Pada Progammable Logic Controller :
1. Pengawatan lebih sedikit.
2. Perawatan relatif mudah .
3. Pelacakan sistem lebih sedarhana.
4. Konsumsi daya relatif rendah.
5. Dokumentasi gambar lebih sederhana dan lebih mudah dimengerti.
6. Modifikasi sistem lebih sederhana dan cepat.

• Pada Sistem Konvensional Kontrol Panel:
1. Pengawatan lebih kompleks.
2. Perawatan membutuhkan waktu yang lama.
3. Pelacakan kesalahan membutuhkan waktu yang lama.
4. Konsumsi daya yang relatif tinggi.
5. Dokumentasi gambar lebih banyak.
6. Modifikasi sistem membutuhkan waktu yang lama.

Hal-hal yang dapat dikerjakan oleh PLC
Sebagai kontrol urutan mempunyai fungsi:
1. Pengganti relay kontrol logika konvensional.
2. Pewaktu/pencacah (Timer / counter).
3. Pengganti pengontrol PCB card.
4. Mesin kontrol ( auto / semi auto/manual ).

Sebagai kontrol yang canggih mempunyai fungsi:
1. Operasi aritmatika.
2. Penanganan informasi.
3. Kontrol analog ( suhu, tekanan, dan lain-lain ).
4. PID ( Proporsional-Integral-Diferensial).
5. Kontrol motor servo.
6. Kontrol motor stepper.

Sebagai kontrol pengawasan mempunyai fungsi:
1. Proses monitor dan alarm.
2. Monitor dan diagnosa kesalahan.
3. Antarmuka dengan komputer (RS- 23C/ RS-422).
4. Antarmuka printer / ASCII.
5. Jaringan kerja otomatisasi pabrik.
6. Local Area Network.
7. Wibe Area Network.
8. FMS (Flexible Manufacturing System), CIM ( Computer Integrated Manufacturing ), FA ( factory automation ).

Konfigurasi Programmable Logic Controller

PLC mempunyai konfigurasi yang terdiri dari 6 bagian utama yaitu:
- Unit Power Supply
Unit ini berfungsi untuk memberikan tegangan pada blok CPU PLC, biasanya berupa switching power supply.

- CPU (Central Processing Unit) PLC
Unit merupakan otak dari PLC, disinilah program akan diolah sehingga sistem kontrol yang telah kita desain bekerja seperti yang kita inginkan. CPU PLC sangat bervariasi macamnya tergantung pada masing-masing merk dan tipe PLC-nya.

- Memori unit
RAM : Random Acces Memory
EPROM : Eraseable Progammable Read Only Memory
EEPROM : Electrical Eraseable Programmable Read Only Memory.

- Input unit ( sebagai contoh PLC Omron )
Input digital: Input Point Digital
o DC 24 V input
o DC 5 V input / TTL (Transistor Transistor Logic)
o AC/DC 24 V input
o AC 110 V input
o AC 220 V input

Input analog : Input Point Linear
• 0 – 10 V DC
• -10 V DC – 10 V DC
• 4 – 20 mA DC

- Output unit
Output digital : Output Point Digital 1.
o Relay Output
o AC 110 V output
o AC 220 V output
o DC 24 V output,tipe PNP dan tipe NPN.

Output analog : Output Point Linier
• 0 – 1 V DC
• -10 V DC – 10 V DC
• 4 – 20 mA DC

- Peripheral
Yang termasuk dalam peripheral adalah :
1. SSS (Sysmac Support Software)
2. PROM writer
3. GPC (Graphic Programming Console)
4. FIT (Factory Intelegent Terminal)

Perangkat Keras Programmable Logic Controller
Programmable Logic Controller dapat berarti sebagai alat pengendali logika yang dapat diprogram. PLC ini merupakan perangkat kontrol yang menerima data input dari luar yang ditransfer dalam bentuk keputusan yang bersifat logika dan disimpan dalam memori. PLC mempunyai perangkat keras yang berupa CPU (Central Processing Unit), modul input dan output, memori serta piranti program.
Ketika PLC bekerja , saat itu juga PLC mengakses data input dan output, menjalankan program instruksi, serta menjalankan peralatan eksternal.

Central Processing Unit
Central Processing Unit (CPU) merupakan pusat pengolah dan pengontrol data dari seluruh sistem kerja PLC. Proses yang dilakukan oleh CPU ini antara lain adalah mengontrol semua operasi, mengolah program yang ada dalam memori, serta mengatur komunikasi antara input-output, memori dan CPU melalui sistem BUS. CPU juga berfungsi menjalankan dan mengolah fungsi-fungsi yang diinginkan berdasarkan program yang telah ditentukan.

Memori
Agar PLC dapat bekerja sesuai harapan maka dibutuhkan suatu program untuk menjalankannya. Program tersebut harus disimpan dengan cara tertentu agar PLC dapat mengakses perintah-perintah sesuai yang diinstruksikan. Disamping itu juga diperlukan untuk menyimpan data sementara selama pelaksanaan program.

Model Input Output
Model input output merupakan piranti yang menghubungkan antara PLC dengan peralatan yang dikendalikannya. Sebagai contoh pada PLC OMRON rata-rata mempunyai 16 built-in input yang terpasang pada unit 0 CH ( zero channel ). Namun demikian jumlah ini dapat ditambah dengan memasang unit ekspansi I/O. Model input atau output tambahan ini dapat dipasang secara bebas sesuai dengan kebutuhan.

Programming Console
Perangkat ini merupakan panel pemrograman yang didalamnya terdapat RAM (Random Access Memory) yang berfungsi sebagai tempat penyimpanan semi permanen pada sebuah program yang sedang dibuat atau dimodifikasi. Program yang dituliskan ke dalam console harus dalam bentuk mnemonic. Perangkat ini dapat dihubungkan langsung ke CPU dengan menggunakan kabel ekstention yang dapat dipasang dan dilepas setiap saat. Apabila proses eksekusi program telah melewati satu putaran maka panel (Programming Console) ini dapat dicabut dan dipindahkan ke CPU lain, sedangkan CPU yang pertama tadi masih tetap bisa untuk menjalankan programnya, tetapi harus pada posisi RUN atau MONITOR


sumber : http://dunia-listrik.blogspot.com/2009/12/dasar-dasar-plc.html

Gangguan Kesehatan akibat Radiasi Elektromagnetik


Gangguan Kesehatan akibat Radiasi Elektromagnetik



Banyak kejadian seseorang mengeluh sakit kepala, pening, sukar tidur, konsentrasi terganggu, atau merasa letih tanpa tahu penyebabnya. Keluhan tersebut biasanya merupakan gejala adanya kelainan di dalam sistem atau organ tubuh, tetapi sering kali dokter pun tidak menemukan penyebab secara pasti. Tentu saja jika terpaksa diberi obat, biasanya bersifat simptomatis atau hanya meredakan gejalanya semata.

“Saya selalu mengalami sukar tidur, Dok. Padahal, saat ini saya tanpa beban pikiran apa pun," keluh seorang pasien. "Mengapa saya sering migrain dan hampir setiap hari selalu merasa letih. Padahal, menurut dokter, hasil pemeriksaan laborat saya baik semua...," keluh pasien yang lain.

Apabila hal ini terjadi, salah satu yang perlu dipertimbangkan adalah adanya riwayat keterpajanan (exposure) terhadap peralatan yang menimbulkan radiasi elektromagnetik. Ada kemungkinan gangguan tersebut adalah electrical sensitivity. Electrical sensitivity adalah gangguan fisiologis dengan tanda dan gejala neurologis maupun kepekaan, berupa berbagai gejala dan keluhan.

Gangguan ini umumnya disebabkan oleh radiasi elektromagnetik yang berasal dari jaringan listrik tegangan tinggi atau ekstra tinggi, peralatan elektronik di rumah, di kantor maupun industri. Termasuk telepon seluler (ponsel) maupun microwave oven, ternyata sangat potensial menimbulkan berbagai keluhan tersebut.

"Electrical sensitivity"

Sebenarnya telah lama timbul kekhawatiran pada masyarakat akan efek negatif radiasi elektromagnetik terhadap kesehatan, terutama dengan semakin berkembangnya pemanfaatan sumber radiasi nonpengion. Sumber radiasi nonpengion buatan manusia antara lain jaringan listrik tegangan tinggi maupun ekstra tinggi, laser, radar, microwave oven, ponsel, dan sebagainya. Jarang disadari bahwa risiko paling tinggi dari sumber radiasi nonpengion justru berasal dari alam, yaitu sinar ultra violet matahari

Potensi gangguan kesehatan yang timbul akibat pajanan medan elektromagnetik dapat terjadi pada berbagai sistem tubuh, antara lain: (1) sistem darah, (2) sistem reproduksi, (3) sistem saraf, (4) sistem kardiovaskular, (5) sistem endokrin, (6) psikologis, dan (7) hipersensitivitas. Sedangkan manifestasi dari hipersensitivitas dikenal pula dengan istilah electrical sensitivity, yang menggambarkan gangguan fisiologis berupa tanda dan gejala neurologis maupun kepekaan terhadap medan elektromagnetik, dengan gejala-gejala yang khas (Riedlinger, 2004).

Gejala-gejala yang menunjukkan adanya electrical sensitivity sebenarnya banyak sekali, tetapi yang khas antara lain berupa sakit kepala (headache), pening (dizziness), keletihan (fatigue). Tanda dan gejala lain yang dapat dijumpai, misalnya, jantung berdebar-debar (cardiac palpitations), gangguan tidur (sleep disturbances), gangguan konsentrasi (difficulty in concentrating), rasa mual dan gangguan pencernaan lain (nausea and digestive problems) yang tidak jelas penyebabnya, telinga berdenging (tinnitus), muka terbakar (facial burning), dan kulit meruam (rashes), kejang otot (muscle spasme), kebingungan (confusion), serta gangguan kejiwaan berupa depresi (depression) (Rea, 1991; Bergdahl, 1995; Grant, 1995).

Peran hormon melatonin

Penyebab timbulnya gejala dan berbagai keluhan tersebut sangat kompleks dan multifaktor karena dapat menyertai berbagai penyakit. Teori terbaru tentang metabolisme hormon melatonin dan pengaruhnya terhadap timbulnya berbagai gejala dan perubahan suasana hati diharapkan dapat menjelaskan mengapa pajanan medan elektromagnetik dapat menimbulkan berbagai gejala tersebut (Sandyk, 1993).

Hormon melatonin (N-acetyl-5-metoksitriptamin) adalah hormon yang sebagian besar dibuat oleh kelenjar pineal, sebuah kelenjar sebesar kacang tanah yang terletak di antara kedua sisi otak. Hanya sebagian kecil dibuat di usus dan retina mata. Produksi hormon melatonin dapat dipacu oleh gelap dan hening serta dihambat oleh sinar yang terang maupun medan elektromagnetik (Zhdanova, 1995). Melatonin diproduksi dalam jumlah besar sekali pada orang muda, untuk kemudian menurun setelah usia 40 tahun. Penurunan produksi hormon ini menyebabkan berbagai keluhan yang lebih banyak dialami oleh usia tua dibandingkan dengan usia muda.

Beberapa gejala yang dapat timbul berkaitan dengan hormon melatonin, antara lain, sukar tidur (insomnia), gangguan pada irama sirkadian, jet lag, serta berbagai gejala lain. Gejala-gejala tersebut berkaitan dengan perubahan metabolisme hormon melatonin yang diproduksi oleh kelenjar pineal. Gejala-gejala tersebut terutama timbul bila produksi hormon melatonin berkurang (Dollins, 1994).

Produksi hormon melatonin bertambah pada malam hari, terutama pada suasana hening dan gelap sehingga menyebabkan orang mudah tidur. Namun, produksi hormon ini berkurang oleh adanya rangsangan dari luar, misalnya cahaya serta medan elektromagnetik. Cahaya maupun pajanan medan elektromagnetik dapat menurunkan produksi hormon melatonin dan berpotensi menimbulkan berbagai keluhan, termasuk sakit kepala, pening, dan keletihan.

Upaya pencegahan

Electrical sensitivity merupakan salah satu penyakit lingkungan. Bagaimana pun penyakit lingkungan yang diderita oleh manusia bukan semata-mata berasal dari radiasi elektromagnetik semata.

Banyak polutan yang berupa gas buang dari kendaraan bermotor, industri, maupun aktivitas manusia yang lain berisiko menimbulkan gangguan kesehatan. Jadi, sulit memprediksi apakah berbagai keluhan yang timbul itu semata-mata hanya berasal dari radiasi elektromagnetik.

Meskipun demikian, di samping tetap memerhatikan prosedur tetap penggunaan berbagai peralatan yang berisiko menimbulkan radiasi elektromagnetik, ada beberapa hal yang dapat memperkecil risiko gangguan kesehatan, antara lain:

* Dalam menggunakan peralatan elektronik apa pun, misalnya komputer, televisi, dan hair dryer, sebaiknya dengan membuat jarak sejauh mungkin dari sumber pajanan, sedangkan waktu kontak diusahakan seminimal mungkin.

* Meskipun microwave oven hanya memerlukan waktu sangat pendek untuk memanaskan makanan, dalam prosesnya jangan ditunggu apalagi dalam jarak sangat dekat. Alat ini menghasilkan energi foton yang sangat besar dan berisiko mengganggu kesehatan apabila tidak mematuhi prosedur penggunaannya. Khusus bagi ibu hamil pada tiga bulan pertama harus lebih waspada lagi.

* Kecuali microwave oven, telepon seluler juga menghasilkan energi foton yang sangat besar dan potensi radiasinya lebih besar dibandingkan dengan peralatan elektronik maupun jaringan listrik tegangan tinggi dan ekstra tinggi.

Meskipun sangat membantu pekerjaan dan aktivitas sehari-hari, seyogianya waktu penggunaannya dibatasi. Jangan selalu mengantonginya, terutama pada saku baju kiri, apalagi bila menggunakan alat pacu jantung.

DR ANIES MKK PKK Dosen Fakultas Kedokteran Universitas Diponegoro

Sumber: http://www.kompas.co.id/

                 http://dunia-listrik.blogspot.com/2009/11/gangguan-kesehatan-akibat-radiasi.html

Penggunaan Alat Penghemat Listrik Di Rumah


Penggunaan Alat Penghemat Listrik Di Rumah




Penggunaan alat penghemat pemakaian energi listrik untuk rumah tangga masih kontroversi sampai saat ini. Ada pihak yang mengatakan bahwa penggunaan alat penghemat listrik tersebut tidak efektif dan hanya merupakan pembodohan kepada publik saja, namun klaim tentang manfaat dan keefektifan dari alat tersebut pun tak kalah hebatnya, terutama yang disebar-luaskan oleh pihak-pihak yang berkepentingan dan mendapat keuntungan dari penjualan alat ini.

Mengenai penggunaan alat ini pun menjadi topik yang menarik di forum dunia listrik (dapat anda lihat di sini). Namun Dunia listrik berusaha untuk mendapatkan penjelasan yang dapat dipertanggung-jawabkan mengenai keefektifan penggunaan alat penghemat listrik tersebut, dan akhirnya mendapatkan informasi yang diinginkan pada situs PLN-Distribusi Jawa Tengah dan D.I Yogyakarta. Berikut kutipannya:

“Umumnya, penjual memberi iming-iming bila alatnya bisa menghemat listrik 10 hingga 40 persen. Bahkan juga diberi jaminan barang akan diganti baru bila tidak terjadi perubahan tagihan listrik dalam 1 tahun. Tak ayal, ini menjadi magnet tersendiri bagi masyarakat terus berusaha menekan pengeluaran.

Di Indonesia, alat ini mulai dipasarkan sejak 2003. Berbagai merek didatangkan dari luar negeri, baik dari Jerman, Italia maupun negara Eropa lainnya. Meski ada juga buatan lokal yang mengadopsi teknologi luar.

Biasanya, alat hemat energi buatan luar negeri dipatok lebih mahal dibanding buatan lokal. Alat hemat listrik buatan Jerman misalnya dipasarkan dengan harga antara Rp 1,25 juta sampai Rp 1,5 juta, bergantung kapasitas daya yang digunakan. Sedang alat hemat energi buatan lokal berkisar Rp 100 ribu hingga Rp 300 ribu.

Kompensator Daya

Sebetulnya, cara kerja alat itu terbilang sederhana. Menurut teori, untuk mengurangi pemakaian energi listrik diperlukan sebuah kompensator daya. Kompensator ini bekerja sebagai pengatur tegangan yang akan mengurangi catu tegangan ke beban, yang berarti mengurangi catu daya ke beban. Nah, dengan mengurangi catu daya secara otomatis energi yang terpakai pun akan berkurang dibanding keadaan normal.

Ada dua jenis kompensator daya yang banyak beredar di pasaran, yakni kompensator yang dipasang secara paralel dengan beban dan kompensator yang dipasang seri dengan beban. Dari dua jenis kompensator daya ini, yang banyak beredar di pasaran adalah kompensator daya yang dipasang paralel. Jika dirata-rata, perbandingan antara jumlah kompensator daya yang dipasang paralel dengan seri kira-kira 9:1.

Kompensator yang dipasang secara paralel terhadap beban sebenarnya merupakan kompensator daya aktif-reaktif. Asas kerja kompensator ini memanfaatkan jenis arus yang dialirkan PLN ke pelanggan, yakni arus bolak-balik yang memiliki dua komponen daya: aktif dan reaktif. Daya aktif adalah daya sebenarnya yang dibutuhkan beban. Sebaliknya, daya reaktif adalah daya yang dapat terjadi karena induktansi maupun kapasitansi. Induktansi disebabkan komponen yang berbentuk kumparan seperti motor listrik maupun transfomator step down pada adaptor. Sedangkan kapasitansi diakibatkan oleh komponen kapasitor. Resultan atau jumlah dari keduanya kemudian membentuk daya nyata.

Dalam kenyataannya, daya yang dipasok oleh PLN adalah daya nyata. Oleh sebab itu untuk meminimalisasi daya yang dipasok oleh PLN maka sebisa mungkin daya reaktif diminimalisasi. Jika beban bersifat induktif maka diberi kapasitor dan jika beban bersifat kapasitif maka beban diberi induktor. Karena umumnya peralatan yang digunakan dalam lingkungan perumahan bersifat induktif, maka kompensator daya untuk mengeliminasi daya reaktif tak lain berupa kapasitor. Biasanya, alat ini dipasang secara paralel pada jaringan listrik, tepatnya setelah kotak MCB (Mini Circuit Breaker) atau sekering yang telah terpasang sebelumnya.

Sementara itu, kompensator daya yang dipasang seri dengan pemanfaat listrik merupakan sebuah alat penurun kinerja beban dengan cara menurunkan catu daya melalui penurunan tegangan catu. Hasil keluaran dari pemasangan alat kompensator daya jenis seri ini adalah diperoleh penurunan pemakaian daya nyata (watt), tetapi tegangan catu ke pemanfaat listrik juga dibuat turun. Sepintas terlihat sebagai penghematan pemakaian energi listrik, tetapi sesungguhnya kinerja pemanfaat listrik menurun dan dapat berakibat mengurangi umur pemanfaatan listrik.

Untung Rugi Penggunaan Peralatan

Berdasar penelitian alat penghemat energi yang dilakukan Pranyoto, dari bagian Litbang PLN, penggunaan alat penghemat energi, baik berupa kompensator yang dipasang seri atau paralel ternyata tidak memberi kontribusi seperti yang dijanjikan produsen. Alih-alih menurunkan penggunaan daya, yang terjadi pada penggunaan alat semacam itu adalah mengurangi efisiensi peralatan dan umur pemanfaatan listrik. Ini disebabkan meski diperoleh penurunan pemanfaatan daya nyata antara 15 persen hingga 20 persen, tetapi pemanfaatan listrik juga dibuat menurun hingga 20 persen. Misal, AC dan kulkas menjadi kurang dingin dan lampu menjadi redup.

Selain itu, pada kondisi tertentu yang mempertimbangkan adanya hambatan dalam kabel, penghematan yang terjadi dalam rumah sangat kecil. Penghematan hanya akan didapat ketika terjadi kondisi ekstrim dimana daya nyata dua kali lipat daya aktifnya. Namun jika dalam kondisi ideal alat ini justru akan menambah tagihan listrik meskipun besarnya tidak seberapa.

Namun demikian alat ini juga berguna mengoptimalisasi daya listrik agar daya yang digunakan dapat digunakan sesuai daya yang diperbolehkan oleh PLN. Misal, pada perumahan, kWh meter akan menghitung daya aktif, tetapi MCB bekerja berdasarkan arus yang mengalir pada resultan daya nyata. Dengan menggunakan alat ini, maka resiko adanya pemutusan arus (ngejepret) oleh MCB dapat berkurang, dengan catatan bahwa rumah tersebut banyak menggunakan peralatan yang bersifat induktif. Jadi jika sebuah rumah berdaya 900 watt, terkadang dengan peralatan yang berdaya 600 watt atau 700 watt ternyata listriknya ngejepret. Nah, dengan pemasangan alat penghemat energi maka penggunaan daya akan dapat dioptimalkan mendekati 900 watt.

Jurus Menggaet Konsumen

Seringkali seorang calon pembeli tertarik iming-iming penurunan tagihan listrik yang diungkapkan penjual. Biasanya konsumen akan diberi demonstrasi yang meyakinkan. Ada tiga modus yang sering digunakan.

Pertama, dengan menggunakan amperemeter. Ketika kompensator dipasang, amperemeter akan menunjukkan angka lebih rendah dibanding kondisi normal. Konsumen yang biasanya awam dengan masalah kelistrikan seringkali terkecoh. Tentu saja keadaan sebenarnya tidak demikian. Amperemeter mengukur arus pada komponen daya nyata dan bukan pada komponen daya aktif. Walaupun besaran yang ditunjukkan amperemeter akan berubah tergantung apakah alat penghemat dipasang atau tidak, besaran arus pada komponen daya aktif sebenarnya tidak akan berubah.

Kedua, dengan menggunakan wattmeter. ’Jurus’ ini memang lebih cerdik dari yang pertama, karena PLN memang mengukur berdasarkan Watt. Tetapi yang tidak disadari konsumen adalah ada hambatan berukuran besar atau gulungan kabel yang sangat panjang di belakang alat demonstrasi ini yang menghubungkan beban dengan sumber listrik, terkadang bahkan sampai 100 meter. Jelas, ini sangat kontras dengan keadaan instalasi di rumah yang rata-rata hanya mencapai 10 meter.

Ketiga, masih menggunakan wattmeter, tetapi tanpa memperlihatkan besaran tegangan. Alat ini dengan meyakinkan dapat memperlihatkan bahwa penggunaan daya akan dihemat. Tetapi konsumen tidak menyadari bahwa sebenarnya tegangan listrik sudah jauh di bawah 220V, diturunkan dari keadaan normal.

Sebenarnya ada cara mudah menekan tagihan rekening listrik yang tidak memerlukan peralatan tambahan semacam ”alat hemat listrik”. Salah satunya mengkonsumsi listrik seperlunya atau mematikan peralatan saat tidak digunakan. Misal ketika keluar kamar, lampu dimatikan. Jangan lupa pakai lampu hemat energi. Meski agak sedikit mahal tapi konsumsi dayanya jauh lebih kecil dibanding lampu biasa dan umur penggunaannya lebih lama.

So, mudah kan? Tanpa perlu membeli alat hemat listrik yang berharga jutaan, Anda juga dapat menghemat listrik dengan mudah dan nyaman.”

sumber: www.plnjateng.co.id

               http://dunia-listrik.blogspot.com/2009/05/penggunaan-alat-penghemat-listrik-di.html

Listrik Prabayar Cegah Pembengkakan Biaya


Listrik Prabayar Cegah Pembengkakan Biaya



DEPOK - Untuk mence­gah pemakaian listrik berle­bihan dan pembengkakan biaya, Perusahaan Listrik Negara (PLN) Kota Depok, Jawa Barat, mendorong ma­syarakat agar menggunakan LPB (Listrik Prabayar). Pe­langgannya dapat mengeta­hui besaran pemakaian lis­triknya setiap hari dan me­ngurangi risiko kebocoran. "LPB juga dapat mengu­rangi kesalahan pencatatan meteran listrik karena sudah digitalisasi". Selain itu, me­nurut Humas PLN Kota De­pok, Setiabudi, saat dihu­bungi Republika, Sabtu (25/7), untuk menggunakan LPB, pelanggan dikenakan biaya migrasi sebesar Rp 850 ribu. Biaya ini untuk meng­ganti meteran konvesional dengan yang digital.

Meteran digital akan ber­bunyi dan lampunya menyala apabila token (pulsa listrik) hampir habis. Token tersedia di loket-loket Payment Point Online Bank (PPOB) dengan besaran dari Rp 20 ribu hingga Rp 1 juta. "Pelanggan dapat menge­cek pemakaian token dengan menggunakan kode, seperti cek pulsa di HP," ujar Setia­budi. Ia menjelaskan, sebenar­nya program LPB diperke­nalkan di Kota Depok sejak April 2009. "Setiap pelang­gan yang ingin memasang instalasi listrik baru selalu kami tawarkan model LPB, atau petugas PLN yang di lapangan juga menyosialisasikan LPB ini," tuturnya.

Saat ini, telah terdapat 1.600 pelanggan LPB dari 5.000 perangkat meteran di­gital yang disediakan PLN Jawa Barat pada 2009. "Pe­langgan PLN di Kota Depok mencapai 461 ribu, jadi ini baru sekitar 1,6 persen saja. Tapi, ke depan pelanggan LPB bertahap akan kita per­banyak," kata Setiabudi. Seluruh pelanggan yang masuk dalam UPJ (Unit Pela­yanan Jaringan) Kota Depok meliputi Bojong, Cimanggis, Cibinong, dan Sawangan sudah dapat dilayani.


Sumber: Republika 

                 http://dunia-listrik.blogspot.com/2009/07/listrik-prabayar-cegah-pembengkakan.html

Open Source Menyelamatkan Pasokan Listrik di Australia


Open Source Menyelamatkan Pasokan Listrik di Australia

Sebuah virus menginfeksi jaringan sistem komputerisasi di Integral Energy, dan berhasil menyebar ke komputer operator didalam ruang kendali. Namun dengan sigap, para teknisi disana mengganti komputer-komputer yang berbasis Windows yang terinfeksi, dengan komputer yang berbasis Linux. Penyebaran virus pun berhasil dicegah, dan sekali lagi open source tersebut (Linux) berhasil menunjukkan kelebihannya.

Cerita diatas bukanlah sebuah isapan jempol atau dongeng tentang open source belaka, melainkan kejadian nyata yang terjadi di Australia. Integral Energy adalah perusahaan penyedia listrik terbesar kedua di australia. Kekhawatiran akan serangan virus, hacker, ataupun teroris cyber dari negara lain yang akan menyerang objek vital dinegara tersebut telah menjadi perhatian beberapa pihak di pemerintahan australia. Bahkan mereka juga khawatir akan penggunaan Windows di infrastruktur yang sifatnya kritikal dan vital.

Dalam kasus Integral Energy ini, ternyata banyak sekali komputer yang berbasis Windows didalam jaringan Integral Energy yang sudah terinfeksi virus, dan harus dibangun ulang.

sumber: PC mild edisi 21/2009, sumber utama theinquirer.net

"semoga pengalaman dari negara tetangga ini menjadi pelajaran buat pengelola pembangkit listrik yang ada di Indonesia, terutama yang sistem kendalinya sudah terintegrasi dan komputer yang digunakan berbasis Windows. Karena tidak menutup kemungkinan hal tersebut terjadi juga di Indonesia, akibat kekecewaan atas kinerja PLN sebagai satu-satunya pengelola energi listrik di negeri ini, yang dianggap oleh sebagian masyarakat, masih belum mampu untuk menyediakan energi listrik sesuai yang dibutuhkan"


sumber : http://dunia-listrik.blogspot.com/2009/11/open-source-menyelamatkan-pasokan.html

PLN Bangun Interkoneksi Sumatera-Malaysia


PLN Bangun Interkoneksi Sumatera-Malaysia


PT Perusahaan Listrik Negara bekerja sama dengan Tenaga Nasional Berhad, perusahaan tenaga listrik milik pemerintah Malaysia, membangun jaringan interkoneksi Sumatera-Malaysia sepanjang 100-200 kilometer.

Direktur Perencanaan dan Teknologi PLN Bambang Praptono mengatakan, pembangunan interkoneksi tersebut untuk pertukaran listrik dengan cara memindahkan aliran listrik kedua negara pada saat beban puncak. Tukar menukar pasokan listrik bisa sebesar 600 Megawatt pada 2015 mendatang.

"Prinsipnya bukan Indonesia mengirim listrik, tapi kerja sama pertukaran listrik waktu beban puncak, Malaysia pada siang hari diberi 300 MW, dan malam hari Malaysia mengembalikan 300 MW," kata Bambang di Kantor PLN Pusat, Jalan Trunojoyo, Jakarta, Selasa 27 Oktober 2009.

Menurut dia, dengan adanya kerja sama ini, PLN tidak perlu lagi mengoperasikan unit-unit pembangkit yang menggunakan bahan bakar minyak, sehingga dapat mengurangi biaya pokok penyediaan dan bisa mengamankan pasokan listrik.

Bambang menjelaskan, titik serah pasokan dimulai dari Sumatera. Sedangkan untuk jarak kabel interkoneksi akan melalui jalur laut dan darat. "Rutenya masih kami bicarakan," ujarnya.

Untuk pendanaan pembangunan jaringan transmisi ini, diperkirakan menelan investasi sekitar US$ 300 juta. "Saat ini sudah ada beberapa pihak yang menawarkan pinjaman, di antaranya Bank Pembangunan Asia (ADB), Bank Dunia, serta Japan International Corporation Agency."

Bambang menargetkan, pada 2012 pembangunan jaringan transmisi ini sudah harus dibangun, sehingga target pertukaran listrik pada 2015 bisa direalisasikan. Saat ini PLN juga sudah memiliki kerja sama serupa dengan dibangunnya jaringan transmisi listrik yang menghubungkan Serawak dan Pontianak, yaitu Serawak Electric Company (Sesco).

Proyek ini merupakan bagian dari proyek ASEAN Power Grid (APG) di mana pada masa datang di ASEAN akan ada interkoneksi

listrik ASEAN, di antaranya Semenanjung Malaysia-Singapura, Thailand-Semenanjung Malaysia, dan Serawak-Semenanjung Malaysia.


Selain itu, Sumatera-Semenanjung Malaysia, Batam-Bintan-Singapura-Johor, Serawak-Kalimantan Barat, Filipina-Sabah,

Serawak-Sabah-Brunei, Thailand-Laos, Laos-Kamboja, Thailand-Myanmar, Vietnam-Kamboja, Laos-Vietnam, dan Thailand-Kamboja.

sumber berita: vivanews.com - Selasa, 27 Oktober 2009, 10:54 WIB

UPDATE

(Jakarta, 26 Oktober) Setelah 20 tahun melakukan studi teknis dan studi kelayakan, interkoneksi sistem kelistrikan antara pulau Sumatera dan Semenanjung Malaysia rencana akan terwujud di tahun 2015. Proyek penyambungan sistem kelistrikan itu akan menggunakan kabel bawah laut 250 kV sepanjang kurang lebih 200 kilometer dan dua set kabel bawah laut masing-masing 57 kilometer.

Interkoneksi tersebut akan mampu menyalurkan daya sebesar 600 MW. Kedua pihak, PLN dan Tenaga Nasional Berhad (TNB), perusahaan listrik Malaysia akan mengadakan pertemuan kembali untuk mendiskusikan perumusan kontrak, pendanaan, dan detil pekerjaan.

Untuk pendanaan, Bank Dunia akan dilibatkan dalam proyek yang sangat penting ini. Penandatanganan Heads of Agreement tentang hal tersebut dilakukan Jum’at (23/10) lalu antara Direktur Utama PLN Fahmi Mochtar dan President and Chief Executive Officer TNB Datuk Seri Che Khalib Mohd Noh. Proyek ini akan menjadi koneksi listrik antar dua negara yang kedua setelah terjalinnya kesepakatan interkoneksi pertama yang menghubungkan Bakun dan Kalimantan Barat.

Interkoneksi ini akan memungkinkan kedua negara, Indonesia dan Malaysia, untuk saling membantu dan mendukung pemenuhan kebutuhan listrik satu sama lain pada saat beban puncak, dimana beban puncak di semenanjung Malysia terjadi pada siang hari dan beban puncak di Sumatera terjadi pada malam hari.

sumber: PLN.co.id

                http://dunia-listrik.blogspot.com/2009/10/pln-bangun-interkoneksi-sumatera.html

Jaringan Internet melalui Kabel Listrik


Jaringan Internet melalui Kabel Listrik


Jaringan Internet melalui Kabel Listrik atau Broadband over Power Line (BPL) - Jauh sebelum kabel telepon tetap (fixed line), kabel listrik (power line) telah lebih dulu mengalir ke rumah-rumah dan gedung-gedung perkantoran. Namun, justru kabel telepon tetap yang terlebih dulu digunakan sebagai jalan masuk koneksi internet (last mile) ke perumahan dan perkantoran.

Padahal dengan memanfaatkan kabel listrik sebagai last mile, tentulah penetrasi internet berpita lebar (broadband) akan jauh lebih efektif dan merata. Dengan teknologi Broadband over Power Line (BPL), siapapun tinggal mencolokkan PC ke sembarang stop kontak (electrical outlet), dan secara instan dapat segera menikmati internet berkecepatan tinggi . Dengan menggabungkan prinsip-prinsip teknologi radio, wireless networking dan modem, para pengembang bisa menciptakan cara untuk mengirimkan data melalui kabel listrik ke perumahan dan perkantoran dengan kecepatan berkisar antara 500 Kbps hingga 3 Mbps (setara dengan kecepatan DSL).

Dengan sedikit modifikasi pada kabel listrik, pengembang BPL bisa bekerja sama dengan perusahaan penyedia listrik dan ISP (Internet Service Provider) untuk mewujudkan koneksi broadband kepada setiap pelanggan. Pada titik ini, usulan untuk menjadikan kabel listrik sebagai last mile menawarkan dua jenis layanan, yaitu:
- menghubungkan perangkat-perangkat listrik didalam rumah atau kantor.
- akses BPL akan membawa koneksi broadband menggunakan kabel, dan memungkinkan perusahaan penyedia listrik untuk mengontrol sistem listrik didalam rumah atau kantor.

Transmisi data berkecepatan tinggi menggunakan kabel listrik, memunculkan potensi untuk menghubungkan semua perangkat listrik yang tercolok atau terhubung didalam rumah. Bayangkan jika perangkat-perangkat listrik dirumah anda memiliki fasilitas auto power atau timer, seperti alarm rumah, sakelar lampu, mesin pembuat kopi atau bahkan mesin cuci bisa berkomunikasi satu sama lain melalui sebuah koneksi internet berkecepatan tinggi. Pagi hari akan terlihat benar-benar berbeda.



Metode Lawas

Biasanya, ISP-ISP besar menyediakan jalur serat optik dari perusahaan telekomunikasi untuk membawa data dari dan ke internet, atau mungkin ke media lain (telepon, DSL atau TV kabel) kerumah anda.

Gagasan untuk menggunakan kabel listrik AC (alternating current, arus bolak-balik) untuk mentransfer data sendiri bukanlah hal baru. Dengan membundel energi radio-frequency (RF) pada jalur yang sama dengan arus listrik, data dapat ditransmisikan tanpa perlu menggunakan jalur data terpisah. Hal ini bisa terjadi karena arus listrik dan getaran RF memiliki frekuensi yang berbeda. Keduanya tidak saling menginterferensi.

Perusahaan penyedia listrik telah menggunakan teknologi ini selama bertahun-tahun untuk memonitor kinerja sistem tenaga listrik, dikenal dengan SCADA. Saat ini bahkan telah ada solusi jaringan yang mentransfer data menggunakan kabel listrik untuk perumahan dan perkantoran.

Para pengembang teknologi BPL bekerja sama dengan perusahaan penyediaan listrik di AS tengah bekerja untuk mewujudkan BPL ini. Terdapat beberapa pendekatan yang berbeda untuk mengatasi rintangan yang muncul ketika mentransmisi data melalui kabel listrik.

Menghindari Interferensi

Seperti perusahaan telekomunikasi, perusahaan penyedia listrik juga memiliki kabel yang terbentang di seluruh dunia. Perbedaannya, perusahaan listrik memiliki jaringan kabel listrik yang menjangkau lebih banyak tempat ketimbang serat optik yang dimiliki perusahaan telekomunikasi. Kenyataan ini jelas menjadikan kabel listrik sebagai kendaraan yang paling berpotensi untuk menyediakan koneksi internet ke tempat-tempat yang belum terjangkau oleh kabel serat optik.

Kabel merupakan salah satu komponen dari jaringan yang dimiliki pleh perusahaan penyedia listrik. Selain kabel, jaringan listrik menggunakan generator, stasiun kecil atau gardu, transformer atau trafo dan perangkat penyambung lainnya untuk membawa listrik dari pembangkit listrik menuju rumah atau kantor.

Ketika listrik meninggalkan pembangkit, dia bergerak menuju gardu, baru kemudian disitribusikan ke kabel-kabel transmisi bertegangan tinggi. Ketika digunakan untuk mentransmisi koneksi broadband, kabel bertegangan tinggi inilah yang menjadi penghalang pertama. Listrik yang mengalir pada kabel transmisi ini dapat bertegangan tinggi sekitar 150 kV atau bahkan bertegangan ekstra tinggi diatas 500 kV. Besarnya tegangan ini sangat tidak cocok untuk mentransmisi data.

Seperti telah dijelaskan diatas, arus listrik dan RF menggunakan frekuensi yang berbeda. Agar data dapat ditransmisikan secara jernih dari satu titik ke titik lainnya, maka dibutuhkan jalur yang mendukung spektrum radio untuk bergetar tanpa terinterferensi oleh sumber lain. Ratusan ribu volt listrik tersebut tidak bergetar di frekuensi yang tetap. Arus listrik dalam jumlah tersebut melibas semua spektrum, dan bila bergerak di spektrum yang digunkan RF, dapat dipastikan sinyal transmisi data akan drop atau bahkan hancur berantakan.

BPL mem-bypass masalah ini dengan menghindari penggunaan bersama kabel bertegangan tinggi. Sistem ini menurunkan tegangan data menjadi 7200 volt, atau sama dengan tegangan listrik yang dialirkan pada kebel bertegangan menengah.

semoga bermanfaat, 

sumber : http://dunia-listrik.blogspot.com/2010/01/jaringan-internet-melalui-kabel-listrik.html

200 MW PLTD Dapat Disubstitusi dengan PLTP Skala Kecil


200 MW PLTD Dapat Disubstitusi dengan PLTP Skala Kecil


Berdasarkan hasil studi oleh Kementerian Ristek bersama-sama dengan BPPT, terdapat lebih dari 200 MW PLTD di NTB, NTT, Maluku dan Maluku Utara yang dapat disubstitusi dengan PLTP skala kecil, dengan potensi penghematan BBM sebesar sekitar 200.000 KL per tahun yang setara dengan Rp. 1 trilyun lebih per tahun. (Subsidi listrik oleh Pemerintah pada tahun 2009 : Rp. 51,9 trilyun).

Kementerian Energi dan Sumber Daya Mineral telah menetapkan di dalam road-map (action plan) bahwa target pengembangan Pembangkit Listrik Tenaga Panas Bumi (PLTP) sampai dengan tahun 2025 adalah sebesar 9.000 MW, dengan tahapan 2.000 MWe (Tahun 2008), 3.442 MWe (Tahun 2012), 4.600 MWe (Tahun 2016), dan 9.500 MWe (Tahun 2025). Namun, sampai saat ini baru 1.189 MW (4,3%) yang telah dimanfaatkan untuk membangkitkan listrik, maka tanpa adanya percepatan pengembangan, target diatas akan sangat sulit untuk dicapai.

Untuk mencapai besaran target pemanfaatan panas bumi tersebut, pemerintah membagi dalam dua skala pemanfaatan, pertama pengembangan potensi skala yang besar (enthalpy tinggi) melalui PLTP skala besar dan kedua pemanfaatan potensi panas bumi skala kecil (enthalpy rendah-menengah) dengan model pembangkit seperti yang sedang dikerjakan Tim Panas Bumi BPPT.

Teknologi siap pakai dan proven untuk PLTP skala kecil saat ini belum tersedia karena itu inovasi teknologi yang dikembangkan BPPT dapat menjadi solusi pemanfaatan potensi panas bumi skala kecil khususnya sebagai energi pembangkit listrik sekaligus sangat berpotensi sebagai pembangkit pioneer atau pembangkit utilitas pada pengembangan lapangan panas bumi ataupun selama masa konstruksi. Proyek PLTP binary cycle telah dimulai sejak akhir 90an bekerjasama dengan Prancis di Lahendong, Sulawesi Utara, namun pada saat itu seluruh peralatan dan teknologinya masih impor, berbeda dengan saat ini yang seluruhnya komponennya merupakan produk dalam negeri. Binary cycle saat ini masalah dalam skala pilot project dengan kapasitas kecil, rencana kedepannya BPPT akan meningkatkan besaran kapasitas pembangkit hingga mencapai 1 MW secara bertahap, ujar Direktur Pusat Teknologi Konversi dan Konservasi BPPT, Arya Rezavidi. (SF)

sumber: Kementerian ESDM

                http://dunia-listrik.blogspot.com/2010/03/200-mw-pltd-dapat-disubstitusi-dengan.html

Pemerintah Siap Bangun 93 Pembangkit Listrik Baru


Pemerintah Siap Bangun 93 Pembangkit Listrik Baru

Setelah menerbitkan Peraturan Presiden No. 4 Tahun 2010 sebagai landasan dan payung hukum Program Percepatan 10.000 MW Tahap II, Kementerian ESDM mengeluarkan Peraturan Menteri ESDM No. 02 Tahun 2010 Tentang Daftar Proyek-Proyek Percepatan Pembangunan Pembangkit Listrik Tahap II serta transmisi terkait.

Dalam Permen ESDM No, 2 Tahun 2010 dijelaskan bahwa proyek-proyek pembangkit tenaga listrik yang akan dibangun menggunakan bahan bakar energi terbarukan, batubara dan gas, 21 pembangkit akan dibangun PT PLN (Persero) dan 72 pembangkit melalui kerjasama PT PLN (Persero) dengan pengembang listrik swasta.
Masa berlaku Permen adalah sejak tanggal 27 Januari 2010 hingga tanggal 31 Desember 2014.

Berikut daftar pembangkit yang akan dibangun dalam proyek percepatan 10.000 MW tahap II seperti tercantum dalam Permen ESDM.
Proyek-proyek pembangkit yang dilaksanakan oleh PLN :

1. PLTP Tangkuban Perahu I, Jawa Barat dengan kapasitas 2x55 MW.
2. PLTP Kamojang 5 dan 6, Jawa Barat dengan kapasitas 1x40 MW dan 1x60 MW.
3. PLTP Ijen, Jawa Timur dengan kapasitas 2x55 MW.
4. PLTP Lyang Argopuro, Jawa Timur dengan kapasitas 1x55 MW
5. PLTP Wilis/Ngebel, Jawa Timur dengan kapasitas 3x55 MW.
6. PLTP Sungai Penuh, Jambi dengan kapasitas 2x55 MW.
7. PLTU Hululais, Bengkulu dengan kapasitas 2x55 MW.
8. PLTP Kotamobagu 1 dan 2, Sulawesi Utara dengan kapasitas 2x20 MW.
9. PLTP Kotamobagu 3 dan 4, Sulawesi Utara dengan kapasitas 2x20 MW.
10. PLTP Sembalun, Nusa Tenggara Barat dengan kapasitas 2x10 MW.
11. PLTP Tulehu, Maluku dengan kapasitas 2x10 MW.
12. PLTA Upper Cisokan, Jawa Barat dengan kapasitas 4x250 MW.
13. PLTU Asahan 3, Sumatera Utara dengan kapasitas 2x87 MW.
14. PLTU Indramayu, Jawa Barat dengan kapasitas 1x1.000 MW
15. PLTU Pangkalan Susu 3 dan 4, Sumatera Utara dengan kapasitas 2x200 MW.
16. PLTU Sampit, Kalimantan Tengah dengan kapasitas 2x25 MW.
17. PLTU Kotabaru, Kalimantan Selatan dengan kapasitas 2x7 MW.
18. PLTU Parit Baru, Kalimantan Barat dengan kapasitas 2x50 MW
19. PLTU Talakar, Sulawesi Selatan dengan kapasitas 2x100 MW.
20. PLTU Kaltim (Peaking) dengan kapasitas 2x50 MW
21. PLTGU Muara Tawar ad on 2,3 dan 4, Jawa Barat dengan kapasitas 1x150 MW dan 3x350 MW.


Proyek-proyek pembangkit yang dilaksanakan melalui kerjasama antara PLN dengan pengembang listrik swasta :

1. PLTP Rawa Dano, Banten dengan kapasitas 1x110 MW.
2. PLTP Cibuni, Jawa Barat dengan kapasitas 1x10 MW.
3. PLTP Cisolok-Cisukarame, Jawa Barat dengan kapasitas 1x50 MW.
4. PLTP Drajat, Jawa Barat dengan kapasitas 2x55 MW.
5. PLTP Karaha Bodas, Jawa Barat dengan kapasitas 1x30 MW dan 2x55 MW.
6. PLTP Patuha, Jawa Barat dengan kapasitas 3x60 MW.
7. PLTP Salak, Jawa Barat dengan kapasitas 1x40 MW
8. PLTP Tampomas, Jawa Barat dengan kapasitas 1x45 MW
9. PLTP Tangkuban Perahu II, Jawa Barat dengan kapasitas 2x30 MW
10. PLTP Wayang Windu, Jawa Barat dengan kapasitas 2x120 MW.
11. PLTP Baturaden, Jawa Tengah dengan kapasitas 2x110 MW.
12. PLTP Dieng, Jawa Tengah dengan kapasitas 1x55 MW dan 1x60 MW.
13. PLTP Guci, Jawa Tengah dengan kapasitas1x55 MW
14. PLTP Ungaran, Jawa Tengah dengan kapasitas 1x55 MW
15. PLTP Seulawah Agam, Nanggroe Aceh Darussalam dengan kapasitas 1x55 MW
16. PLTP Jaboi, Nanggroe Aceh Darusalam dengan kapasitas 1x7 MW
17. PLTP Sarulla 1, Sumatera Utara dengan kapasitas 3x110 MW
18. PLTP Sarulla 2, Sumatera Utara dengan kapasitas 2x55 MW
19. PLTP Sorik Merapi, Sumatera Utara dengan kapasitas 1x55 MW
20. PLTP Muaralaboh, Sumatera Barat dengan kapasitas 2x110 MW
21. PLTP Lumut Balai, Sumatera Selatan dengan kapasitas 4x55 MW
22. PLTP Rantau Dadap, Sumatera Selatan dengan kapasitas 2x110 MW.
23. PLTP Rajabasa, Lampung dengan kapasitas 2x110 MW
24. PLTP Ulubelu 3 dan 4, Lampung dengan kapasitas 2x55 MW.
25. PLTP Lahendong 5 dan 6, Sulawesi Utara dengan kapasitas 2x20 MW.
26. PLTP Bora, Sulawesi Tengah dengan kapasitas 1x5 MW
27. PLTP Merana/Masaingi, Sulawesi Tengah dengan kapasitas 2x10 MW
28. PLTP Mangolo, Sulawesi Tenggara dengan kapasitas 2x5 MW
29. PLTP Huu, Nusa Tenggara Barat dengan kapasitas 2x10 MW
30. PLTP Atadei, Nusa Tenggara Timur dengan kapasitas 2x2,5 MW.
31. PLTP Sukoria, Nusa Tenggara Timur dengan kapasitas 2x2,5 MW.
32. PLTP Jailolo, Maluku Utara dengan kapasitas 2x5 MW
33. PLTP Songa Wayaua, Maluku Utara dengan kapasitas 1x5 MW
34. PLTA Simpang Aur, Bengkulu dengan kapasitas 2x6MW dan 2x9 MW
35. PLTU Bali Timur,Bali dengan kapasitas 2x100 MW
36. PLTA Madura dengan kapasitas 1x400 MW
37. PLTU Sabang, Nanggroe Aceh Darussalam dengan kapasitas 2x4 MW
38. PLTU Nias, Sumatera Utara dengan kapasitas 2x7 MW
39. PLTU Tanjung Pinang, Kepulauan Riau dengan kapasitas 2x15 MW
40. PLTU Tanjung Balai Karimun, Kepulauan Riau dengan kapasitas 2x10 MW
41. PLTU Tanjung Batu, Kepulauan Riau dengan kapasitas 2x4 MW
42. PLTU Bangka, Bangka Belitung dengan kapasitas 2x30 MW
43. PLTU Ketapang, Kalimantan Barat 2x10 MW
44. PLTU Petung, Kalimantan Timur 2x7 mW
45. PLTU Melak, Kalimantan Timur 2x7 MW
46. PLTU Nunukan, Kalimantan Timur 2x7 MW
47. PLTU Kaltim, 2x100 MW
48. PLTU Putussibau, Kalimantan Barat 2x4 MW
49. PLTU Kalsel, Kalimantan Selatan dengan kapasitas 2x100 MW
50. PLTU Tahuna, Sulawesi Utara dengan kapasitas 2x4 MW
51. PLTU Moutong, Sulawesi Tengah 2x4 MW
52. PLTU Luwuk, Sulawesi Tengah, 2x10 MW.
53. PLTU Mamuju, Sulawesi Barat dengan kapasitas 2x7 MW
54. PLTU Selayar, Sulawesi Selatan dengan kapasitas 2x4 MW
55. PLTU Bau-bau, Sulawesi Tenggara dengan kapasitas 2x10 MW.
56. PLTU Kendari, Sulawesi Tenggara dengan kapasitas 2x25 MW
57. PLTU Kolaka, Sulawesi Tenggara 2x10 MW.
58. PLTU Sumbawa, Nusa Tenggara Barat dengan kapasitas 2x10 MW
59. PLTU Larantuka, Nusa Tenggara Timur 2x4 MW
60. PLTU Waingapu, Nusa Tenggara Timur 2x4MW
61. PLTU Tobelo, Maluku Utara, 2x4 MW
62. PLTU Tidore, Maluku Utara, 2x7 MW
63. PLTU Tual, Maluku 2x4 MW
64. PLTU Masohi, Maluku 2x4 MW
65. PLTU Biak, Papua 2x7 MW
66. PLTU Jayapura, Papua 2x15 MW
67. PLTU Nabire, Papua 2x7 MW
68. PLTU Merauke, Papua 2x7 MW
69. PLTU Sorong, Papua Barat 2x15 MW.
70. PLTU Andai, Papua Barat 2x7 MW
71. PLTGU Bangkanai, Kalimantan Tengah 1x120 MW
72. PLTGU Senoro, Sulawesi Tengah, 2x120 MW.

Program Percepatan 10.000 MW merupakan salah satu upaya pemerintah dalam mempersiapkan ketersediaan energi nasional di masa depan untuk mengimbangi peningkatan kebutuhan rata-rata 6,8% per tahun. Terkait masalah pendanaan, dalam Perpres dinyatakan pendanaan pembangunan pembangkit tenaga listrik dan transmisi berasal dari Anggaran Pendapatan dan Belanja Negara (APBN), anggaran internal PT PLN (Persero), dan sumber dana lainnya yang sah dan sesuai dengan ketentuan peraturan perundang-undangan.

Sumber: Kementerian ESDM

                http://dunia-listrik.blogspot.com/2010/03/pemerintah-siap-bangun-93-pembangkit.html
                

Sinkronisasi


Sinkronisasi


Sinkronisasi adalah suatu cara untuk menghubungkan dua sumber atau beban Arus Bolak-Balik (AC). Sumber AC tersebut antara lain generator dan beban adalah transformer yang akan digabungkan atau diparalel dengan tujuan untuk meningkatkan keandalan dan kapasitas sistem tenaga listrik, seperti telah dijelaskan pada artikel “metode paralel generator sinkron”

Pada gambar 1 diperlihatkan 2 buah generator pada satu busbar, generator #1 dalam keadaan terbuka dan akan diparalel atau disinkronkan ke busbar dimana generator #2 telah masuk (telah sinkron dengan jaringan/busbar).


Gambar 1. 2 generator dalam satu busbar.

Untuk dapat terjadi proses sinkronisasi generator #1 ke busbar, maka dibutuhkan parameter yang harus terpenuhi oleh generator #1, yaitu:
1. Nilai Tegangan yang sama antara tegangan Generator #1 dengan tegangan busbar.
2. Nilai Frekuensi yang sama antara Generator #1 dan busbar, di Indonesia digunakan frekuensi 50 Hz.
3. Sudut phase yang sama, vector sudut phase dari generator #1 harus sama dengan vector sudut pase pada busbar.
4. Phase Sequence yang sama, terminal RST generator #1 harus dihubungkan dengan terminal RST busbar.


Gambar 2. 2 Sumber dengan sudut phase yang sama.




Gambar 3. Proses penyamaan sudut phase.

Untuk memenuhi persyaratan sinkron tersebut dilakukan dengan cara mengatur kecepatan putar shaft generator dan tegangan keluaran generator. Circuit Breaker (PMT) dari Generator #1 dapat dimasukan jika persyaratan sinkron terpenuhi

Jenis Sinkronisasi

Seperti telah dijelaskan diawal, bahwa sinkronisasi adalah proses untuk menyamakan tegangan, frekuensi, sudut phase dan sequence phase antara 2 sumber daya AC. Maka berdasarkan arah atau susunan peralatan pada sistem tenaga listrik, sinkronisasi dibagi menjadi 2 jenis, yaitu:

1. Forward Synchronization (sinkronisasi maju), yaitu proses sinkronisasi generator kedalam sistem atau busbar.


2. reverse Synchronization atau backward synchronization (sinkronisasi terbalik), biasanya terjadi pada sistem tenaga listrik disuatu pabrik, dimana suatu jaringan suplai akan digabungkan kedalam suatu jaringan sistem atau busbar yang ada. Pada kondisi ini tidak dimungkinkan untuk mengatur parameter sinkron pada sisi incoming (jaringan yang akan disinkronkan), yang terpenting CB (PMT) dari beban-beban pada jaringan suplai (grid supply) dalam keadaan terbuka.



Peralatan Instrumentasi Untuk Proses Sinkronisasi

Double Voltmeter
Adalah voltmeter dengan tampilan 2 pengukuran tegangan yaitu tegangan dari peralatan yang akan disinkron (generator) dan tegangan sistem yang bekerja simultan.


Double Frequency Meter
Menampilkan nilai frekuensi dari kedua sumber AC.


Synchroscope
Alat yang digunakan untuk mengetahui sudut phase dari kedua sumber. Terdiri dari jarum berputar (rotating pointer), jika jarum berputar tersebut berada pada posisi tepat di jam 12, maka sudut phase dari kedua sumber sama dengan nol dan dapat dikatakan kedua sumber “sefase”, dalam sudut phase yang sama.


Phase Sequence Indikator
Alat ini sama dengan yang digunakan untuk mengetahui sequence phase dari motor induksi. Dilengkapi dengan jarum berputar (rotating pointer), jika jarum berputar searah jarum jam, maka dapat dikatakan memiliki sequence positif RST dan jika berputar sebaliknya ber-sequence negative atau RTS.


Namun biasanya peralatan Phase Sequence tidak diikut sertakan di panel sinkron.

Semoga bermanfaat


Sumber :  http://dunia-listrik.blogspot.com/2009/11/sinkronisasi.html